Speed-Up LOO-CV with SVM Classifier

نویسندگان

  • Gilles Lebrun
  • Olivier Lézoray
  • Christophe Charrier
  • Hubert Cardot
چکیده

Leave-one-out Cross Validation (LOO-CV) gives an almost unbiased estimate of the expected generalization error. But the LOO-CV classical procedure with Support Vector Machines (SVM) is very expensive and cannot be applied when training set has more that few hundred examples. We propose a new LOO-CV method which uses modified initialization of Sequential Minimal Optimization (SMO) algorithm for SVM to speed-up LOO-CV. Moreover, when SMO’s stopping criterion is changed with our adaptive method, experimental results show that speed-up of LOO-CV is greatly increased while LOO error estimation is very close to exact LOO error estimation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Support vector machines classifiers of physical activities in preschoolers

The goal of this study is to develop, test, and compare multinomial logistic regression (MLR) and support vector machines (SVM) in classifying preschool-aged children physical activity data acquired from an accelerometer. In this study, 69 children aged 3-5 years old were asked to participate in a supervised protocol of physical activities while wearing a triaxial accelerometer. Accelerometer c...

متن کامل

Predictive Approaches For Gaussian Process Classifier Model Selection

In this paper we consider the problem of Gaussian process classifier (GPC) model selection with different Leave-One-Out (LOO) Cross Validation (CV) based optimization criteria and provide a practical algorithm using LOO predictive distributions with such criteria to select hyperparameters. Apart from the standard average negative logarithm of predictive probability (NLP), we also consider smoot...

متن کامل

Predictive Approaches For Gaussian Process Classifier Model Selection September 10 , 2008

In this paper we consider the problem of Gaussian process classifier (GPC) model selection with different Leave-One-Out (LOO) Cross Validation (CV) based optimization criteria and provide a practical algorithm using LOO predictive distributions with such criteria to select hyperparameters. Apart from the standard average negative logarithm of predictive probability (NLP), we also consider smoot...

متن کامل

A DWT and SVM based method for rolling element bearing fault diagnosis and its comparison with Artificial Neural Networks

A classification technique using Support Vector Machine (SVM) classifier for detection of rolling element bearing fault is presented here.  The SVM was fed from features that were extracted from of vibration signals obtained from experimental setup consisting of rotating driveline that was mounted on rolling element bearings which were run in normal and with artificially faults induced conditio...

متن کامل

QSAR study of anti-prion activity of 2-aminothiazoles

2-aminothiazoles is a class of compounds capable of treating life-threatening prion diseases. QSAR studies on a set of forty-seven 2-aminothiazole derivatives possessing anti-prion activity were performed using multivariate analysis, which comprised of multiple linear regression (MLR), artificial neural network (ANN) and support vector machine (SVM). The results indicated that MLR afforded reas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006